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INTENSITY ANALYSIS OF RECURRENCE PLOTS FOR THE 
DETECTION OF DETERMINISTIC SIGNALS IN NOISE 

 
 
 
Executive Summary 
 

• The detection of deterministic signals buried in noise is a problem of significance     
for radar warning receivers. 

 
• This report outlines a new method for the detection of deterministic signals based 

on the use of recurrence plots. 
 

• The new method, called Intensity Analysis, is based on a sliding-window 
technique applied to the recurrence plot image combined with histogram analysis. 

 
• Performance of the new detection approach, analyzed using ROC curves, shows 

promise. 
 

• The report also provides background information on recurrence plots and 
Receiver Operator Characteristic (ROC) curves needed to understand the new 
approach.

_______________
Manuscript approved July 18, 2006. 



 
 
 

1.  Introduction 
 
1.A.  Background 
 
Many present-day radar systems rely on low-probability of intercept (LPI) techniques to 
avoid detection.  An LPI system uses various coding strategies to spread its transmitted 
energy over a large spectral range.  Since the radar receiver “knows” the precise code that 
was transmitted, target detection can be achieved with high reliability through correlation 
techniques that yield strong proceeding gain. 
 
From the point of view of the target, the spread-spectrum nature of the radar signal makes 
detection difficult.  In many cases, the power in the radar signal is significantly lower 
than the thermal (white noise) power of the target’s radar-warning receiver (RWR.)  For 
this reason, the detection of deterministic signals in the presence of strong white noise is 
an important tactical requirement for military platforms.  
 
Detection strategies can be categorized by the amount of a priori information assumed.  
For example, if the practitioner is looking for a sinusoid with known amplitude but 
unknown phase the quadrature receiver is the optimal choice.  If instead the frequency is 
unknown the practitioner looks at the power in each frequency “bin” of a power spectrum 
and compares to a threshold.  Different scenarios require different detectors.  If nothing is 
known about the incoming signal the problem is much more difficult.  The receiver must 
be designed to look for arbitrary signals with arbitrary (unknown) parameters (e.g. 
amplitude, phase, frequency, etc.).  The optimal receiver in this case will be one that 
performs well for many types of signals and will likely not be optimal for any one signal. 
 
In this work we explore a technique designed to look for the presence of deterministic 
signals buried in noise that is not based on a priori knowledge of the incoming signal.  
The approach uses Recurrence plots (RPs) to view the time-varying covariance structure 
of the signal as a binary image.  Recurrence plots are in effect time-time distributions and 
contain similar information to that contained in time-frequency analysis, a frequently 
used approach in LPI radar applications1. RP-based detection strategies have been 
considered by Zbilut et al. in distinguishing deterministic signals from noise2,3.  A 
different approach based on cross-recurrence analysis was also considered for the LPI 
problem where the incoming signal is known4, however this approach can be easily 
shown to be sub-optimal.  RPs have also been used in the related problem of de-noising 
signals5. Our approach to recurrence-based detection focuses on the structure of a RP.  
For Gaussian noise recurrence plots exhibit no structure, that is to say the distribution of 
points is uniform throughout.  If there exists some underlying signal the result is a more 
structured plot that will consist of dark and light patterns.  By forming metrics that 
quantify these patterns we build RP detectors and demonstrate their performance in 
detecting signals buried in noise.  We discuss the parameters involved in this detection 
scheme and how they influence the performance of the detector.  Results are displayed as 
Receiver Operating Characteristic (ROC) curves, a commonly used approach to assessing 
detector performance. 
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1.B  Introduction to recurrence plots 
 
The recurrence plot was originally developed as a graphical means of assessing 
stationarity in data arising from nonlinear systems6 and has since been applied to a wide 
variety of problems (including the LPI applications mentioned above).  In short, a 
recurrence plot quantifies correlations in a time series by tracking the times at which a 
signal returns to a given state (recurs).  Any signal that occupies a finite-dimensional 
space will, by definition, recur more frequently than infinite-dimensional noise.  Thus, 
recurrence plots and the metrics derived from them provide a reasonable approach to the 
problem of distinguishing pure noise from signals buried in noise.   
 
The process of constructing a recurrence plot begins with a time-delay embedding of the 
data.  In the analysis of nonlinear dynamical systems, data are often best viewed in state 
space, which is the space defined by the system’s state variables.  A system governed by 
“n” differential equations will therefore be viewed in n-dimensional state space. 
Nonlinear system identification techniques are then applied to data in this space. In 
experimental data, however, the practitioner does not typically have access to each of the 
system’s state variables.  For example an experimental investigation of a pendulum might 
allow for the angular position to be measured but not the angular velocity.  Fortunately 
the embedding theorems of Takens7, and later Sauer8 et al., demonstrate how delayed 
copies of a single state variable can be used to generate pseudo-state vectors that preserve 
certain properties of the “true” underlying dynamical system.  The process of embedding 
allows the practitioner to extract information from a single signal that would otherwise 
not be available. 
 
We describe the embedding process with a simple example.  Consider a 1-dimensional 
data vector x comprising M real numbers 
 
 { } (1), (2), , ( ), , ( )x x x x m x M= " "  
 
For example, this data may result from the measurement of one parameter such as 
voltage, frequency, or temperature at discrete times t = m∆t.  (For convenience, ∆t is 
usually understood and it is dropped from the notation so the time is denoted simply by 
the integer m, sometimes called the time index.)  From this single 1-dim data vector of 
length M, we construct a family of new vectors, each having length n<M.  The N new 
vectors Xi are constructed as follows 
 
 { } ( ), ( ), , ( ( 1) )iX x i x i L x i n L= + + −…  
 
where 1 , L is the delay time and n is the embedding dimension.  Since the largest 
time index is just M, it must be true that the number of new vectors is 

Ni ≤≤

 
  LnMN )1( −−=
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and each of these vectors will be of dimension n.  That is, each of the Xi are vectors that 
live in an n-dimensional space.  Provided that n and L are chosen “properly” this 
representation is topologically equivalent to the underlying n-dimensional system that 
produced the time series x.  There exist a variety of prescriptions for choosing n,L.  The 
optimal delay will produce independent (in the statistical sense) pseudo-state vectors 
while the optimal dimension will be the smallest one that prevents trajectories in state 
space from crossing.  A thorough discussion of both parameters may be found in 
Williams9. 
 
It should be mentioned that the importance of a proper embedding in certain types of 
recurrence plot analysis is not well understood.  The goal in many recurrence-based 
applications is to analyze patterns in the plot corresponding to correlations at a prescribed 
length scale (to be discussed shortly) and not necessarily to preserve the underlying 
dynamics.  Additionally there is some research to suggest that estimates of dynamical 
invariants may be obtained from a recurrence plot without embedding10.  It may also be 
difficult to select proper embedding parameters from data that are highly contaminated by 
noise.  In general, we recommend following the proper embedding procedures outlined in 
references [9]. 
 
It is helpful to consider a specific example:  M = 1024, n = 4, L = 12.  Then N = (1024 - 
3*12) = 988 and  
 

 

{ }
{ }

{ }

1

2

988

 (1), (1 12 13), (1 2*12 25), (1 3*12 37)

 (2), (2 12 14), (2 2*12 26), (2 3*12 38)

 (988), (988 12 1000), (988 2*12 1012), (988 3*12 1024)

X x x x x

X x x x x

X x x x x

= + = + = + =

= + = + = + =

= + = + = + =

#
 

 
Hence, from the original M=1024 element, 1-dimensional data vector we have created a 
family of N = 988 vectors each having dimension n = 4.   
 
 Suppose that we have M =1024 and L = 12 as before but now we choose the 
embedding dimension to be n = 3.  In this case, N = 1024-2*12 = 1000 and 
 

 

{ }
{ }

{ }

1

2

1000

 (1), (1 12 13), (1 2*12 25))

 (2), (2 12 14), (2 2*12 26)

 (1000), (1000 12 1012), (1000 2*12 1024)

X x x x

X x x x

X x x x

= + = + =

= + = + =

= + = +

#
=

 

 
 Next, consider the case M = 1024, L = 1.  If n = 1 is chosen, then N = 1024 = M 
and the Xi are each simply the elements of the original data vector 
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{ }
{ }

{ }

1

2

1024

 (1)

 (2)

 (1024)

X x

X x

X x

=

=

=

#
 

 
and the delay time value is inconsequential. On the other hand, if M = 1024, L = 1, and n 
= 1024, then N = 1024 –1023 = 1 and this original vector X1 = x is recovered – a pretty 
uninteresting case. 
 
The real value of this general approach of time-delay embedding arises in the analysis of 
a nonlinear system that is governed by a number n of differential equations (the 
dimensionality of the system) and when the available data is the result of the 
measurement of only a single parameter.  By correctly choosing the delay time L and 
embedding dimension n, certain structures appear in time-delay embedded space that 
reveal characteristic features of the nonlinear system.  Unfortunately, if the 
dimensionality of the system exceeds n = 3, a full diagram cannot be drawn.  The 
recurrence plot was developed as an attempt to present high dimensionality information 
in a convenient two-dimensional figure6.  
 
The method for constructing the RP is now described.  Given a 1-dimensional data vector 
x of length M and a choice of delay time L and embedding dimension n, the  
N = M – (m-1)L embedded vectors Xi (1 ≤ i ≤ N) are calculated as described above.  
Next, a “distance” between any two vectors say, Xi and Xj, is calculated.  Denote this 
distance by ji XXjiD −=),( .  Various definitions of this “distance” exist. The most 
common is the Euclidean distance between two points in n-dimensional space 
represented by the vectors Xi and Xj. That is  

 
( ) ( ) (

1/ 22 2

( , )

          [1] [1] [2] [2] [ ] [ ]

i j

i j i j i j

D i j X X

X X X X X N X N

= −

 = − + − + + − 
 

" )2
 

where  denotes the k][kX i
th element in the vector . iX

 
Another possible distance measure is the maximum norm11  

 
 ( )( ) 2/12][][max),( kXkXXXjiD ji

k
ji −=−=  

 
 Once all N2 distances have been calculated we could construct a surface or 
contour plot having N x N = N2 entries corresponding to each of the D(i,j) values.    
However, the standard RP goes one step further and asks whether the distance D(i,j) is 
smaller than some predetermined value ε.  If ε≤),( jiD , then a colored dot (or box) is 
placed at location (i,j) in the RP, otherwise the location is left blank (white).  
Mathematically the prescription for the RP is written 
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 ( ) ( )ji XXjiRP −−Θ= ε,  
 
where Θ is the Heaviside step function  
 

  ( )




≤
>

=Θ
00
01

y
y

y

 
and a colored dot or box is applied wherever ( ) 1, =jiRP  and a white space is applied 
where  ( ) .0, =jiRP
 
The following simple example will illustrate the process.  Suppose the initial data vector 
is { } 1, 2,3,3,0x =  (hence M = 5) and that we choose L = 1 and n = 2.  Then  
N = 5-1*1=4 and  
 

 

{ }
{ }
{ }
{ }

1

2

3

4

 1, 2

 2,3

 3,3

 3,0

X

X

X

X

=

=

=

=

 

 
These vectors are plotted in Figure 1.1.  Note that in this example all the vectors are 
unique, , but this will not be true in general. jiXXi , ∀≠

 

Figure 1.1:  2-dimensional time-delay embedded vectors created from the data vector 
x = {1,2,3,3,0} using delay L = 1 and dimension n = 2. Here M = 5 and N = 5-1*1=4. 
 
Next calculate the distances 
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



















=

22520
10102
3015
031022

),( jiD   

 
ere the lower left entry corresponds to (i,j) = (1,1) and the upper right entry corresponds 

 

ince a large amount of possibly high-dimensionality information is forced into a single 

re 1.2.  

inally, we present the contour plot of the D(i,j) matrix itself 

 

his report will evaluate the performance of a new detection method based on recurrence 

H
to (4,4).  Figure 1.2 shows RPs corresponding to three different values of epsilon: 
ε = 1, 2, and 3.  

Figure 1.2:  Recurrence plots calculated from the time delay embedded vectors of Figure 
1.1 for three different values of epsilon. 
 
S
2-D graph, the RP must be used with some care.  The appearance and the shape of 
structures in the RP depend on all three plot parameters (L, n and ε) as seen in Figu
 
F
 
 

Figure 1.3:  Contour plot corresponding to the distance matrix D(i,j). 
 
T
plots for both sinusoidal signals and pseudorandom bit sequences (PRBS) contaminated 
by additive white Gaussian noise (AWGN).  In addition to the parameters used in the 
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construction of the RP itself (L, n, ε) we are also concerned with a) the frequency of th
signal relative to the sampling rate, and b) the strength of the signal with respect to the 
strength of the noise.  For continuous wave (finite power) signals, the relative strength o
signal with respect to noise is the signal-to-noise ratio (snr) 
 

e 

f 

 2

2

noise

signalsnr
σ

σ
=  

 
here  is the variance of the signal and  is the noise variance. Variance is w  2

signalσ 2
noiseσ

calculated in the usual statistical sense.  For data vector { }(1), (2), , ( )x x x x M= " , the 
variance is given by 
 

( )∑ −
−

=
=

M

j
jx

M 1

22 )(
1

1 µσ   

 
nd the mean value is  a ( ) ∑=

=

M

j
jxM

1
)(1µ

µ = 0

.  For example, for a sine wave of amplitude A, 

Asin2πft, the mean value  and the variance 222 Asignal =σ . 

hite Gaussian noise is defined by the following characteristics: 
 
W
 
 1) the mean value of the noise is zero, µ = 0; 
 
 2) the envelope of the normalized probability distribution of amplitudes has a 

Gaussian shape 






−=
22

exp
2

)(
noisenoise

zp
σπσ





 21 z .  Hence, the noise variance alone entirel

 

y 

determines the width of the distribution; and 

 3) the autocorrelation function of the random process is a delta function or, 

 should be noted that for any finite length data vector, these noise characteristics are met 

 our simulations, the noise is simply added to the signal to give a composite data vector.  

 

equivalently, the frequency spectrum is flat (“white”).   
 
It
only approximately, not strictly.  
 
In
When the snr is varied for a particular simulation, the noise variance is held constant and 
the signal level is adjusted to give the desired SNR.  For a sinusoidal signal, Asin2πft, the 
signal-to-noise ratio (linear units) is given by   
 

2

2 2

noise

Asnr
σ

=  
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and in logarithmic units SNR (dB) = 10log10(snr).   For a PRBS where a zero corresponds 
to zero and where a one corresponds to APRBS, the signal variance is ( )22 2signal A=σ  
and the signal-to-noise ratio is  
  

PRBS

2

2 4

noise

PRBSsnr
σ

=
A

 . 

 

.C.  Commercial software used to produce recurrence plots 

he recurrence plots used in this report were all created using Matlab® and the crp 
mand 

 
1
 
T
toolbox.  The crp toolbox provides an easy to use graphical user interface and a com
line interface which are appropriately documented.  The toolbox is licensed under GNU 
GPL and is readily available at http://www.agnld.uni-potsdam.de/~marwan/toolbox/ 
(registration is required.)  An online RP generator is also available and can be found a
http://www.agnld.uni-potsdam.de/~marwan/rp/rp_www.php

t 
. 

 
 
1.D.  Introduction to Receiver Operator Characteristic (ROC) plots 

t the most fundamental level, the purpose of any detection system is to inform the user, 

o 

ions, 

se 

Table 1.1:  Four possible declaration scenarios for a simple detection system 
 

Detection Declare Signal Declare Signal 

 
A
at any particular time, of the presence or the absence of a signal.  Since no detection 
system is perfect, the user must understand and quantify errors associated with the 
detection process.  Table 1.1 illustrates the four possible detection scenarios: the tw
correct declarations, namely “declare signal present when the signal is present” and 
“declare no signal present when no signal is present”; and the two erroneous declarat
namely, “mistakenly declare a signal is present when none is present” that is, a false 
alarm, and “mistakenly declare no signal when the signal is really there”, that is, a fal
negative. 
 

 

Scenarios Present Absent 
al Present True False 

Signal Absent False True 
Sign

 
 common feature of all detection systems is the notion of a threshold. Suppose the 

tly 

 or 

actly 

A
receiver is designed such that, under ideal conditions, when no signal is present exac
zero volts is applied to the detector and, when a signal is present, exactly one volt is 
applied to the detector.  The detector must therefore decide if it has received one volt
zero volts – a task made nontrivial by the fact that any voltage in the real world is 
contaminated by noise. Rather than asking whether the voltage is exactly zero or ex
one, better results can be obtained by asking if the voltage is less than, or greater than, 
say 0.5 volts. That is, a threshold is set at 0.5 volts and “one volt” is declared if the 
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voltage is anywhere above the threshold, and “zero volts” is declared if the voltage i
anywhere below the 0.5 volt threshold. It is generally true that, for any detection system
the percentage of incorrect or false declarations (Table 1.1) depends on where the 
threshold is set.  In order to quantify this dependence, a particularly useful plot, cal
Receiver Operator Characteristic curve, or “ROC” curve, was developed by the radar 
community. 
  

s 
, 

led the 

 plots the probability of detection (Pd) on the vertical axis and the 
zontal 

 

The ROC curve
probability of false positives, called the probability of false alarm (Pfa), on the hori
axis.  Operationally, these probabilities are defined by 
 

presentactually not  signal  times# total
present is signal no when declared signal  times#

present  signal  times# total
present signal when declared signal  times#

=

=

fa

d

P

P

  

 
or example, suppose that, for a particular threshold setting, we conducted 98 trials in 

 
 

Table 1.2:  Example of a detection experiment for n = 98 trials in which the signal was 

  
Detection Declare Signal Declare Signal 

F
which the signal was present for 50 of the trials and absent for 48 trials. Using the same
format as for Table 1.1, suppose the results of this experiment are as shown in Table 1.2.
 
 

absent for 50 trials and the signal was present for 48 trials. 

Scenarios Present Absent 
45 5 

Signal Absent 10 40 
Signal Present 

 
 this experiment, then, we have Pd = 45/48 = 0.94 and Pfa = 10/50 = 0.20.  This result 

he entire 

In
comprises a single point on the ROC curve at (0.20, 0.94).  By choosing various 
threshold levels and conducting the n = 98 trial experiment over and over again, t
ROC curve can be determined.
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2.  Recurrence Plots and Signal Detection 
 
In order to use recurrence plots as a method for signal detection a definitive difference 
between a null plot and signal present plot must be established.  The term null plot is a 
reference to a recurrence plot generated from pure white Gaussian noise (WGN), whereas 
a signal present plot is generated from a deterministic signal with additive white Gaussian 
noise.  It is important to start with an understanding of how changing the properties of a 
signal will affect the look of a recurrence plot.  There are two major properties of a signal 
that greatly impact the appearance of a recurrence plot. 
 
The first of these is the signal to noise ratio, where the higher the ratio is, the more 
defined the structure is within the recurrence plot.  As the signal to noise ratio decreases, 
the more spread out the points of recurrence become, which results in a breakdown of the 
displayed structure.  Figure 2.1 shows a group of recurrence plots with varying levels of 
signal to noise ratio to illustrate its affect on a recurrence plot. 
 

Figure 2.1:  RPs created from a 20 Hz harmonic signal with constant frequency and 
decreasing signal to noise ratio from the left to the right (15dB, 0dB, and –15dB.)  The 
parameters used in creating the recurrence plots were dimension of 4, delay of 12, 
epsilon of 1, and neighbor search using Euclidean norm between normalized vectors.   
 
All recurrence plots displayed in this report were created from time-series vectors 
consisting of 1024 data points (M = 1024.)  In order to display these recurrence plots in 
an appreciable way, each recurrence plots shown is only a fraction of the original plot.  
Each plot originally contained 988 by 988 pixels, whereas the shown portion is an 
enlarged view of the first 250 by 250 pixels. 
  
Along with signal to noise ratio, the ratio of signal frequency to sampling frequency 
greatly impacts the quality of the generated recurrence plot.  When the signal frequency 
is low, relative to the sampling frequency, the lines of structure within the recurrence plot 
tend to be more spaced out.  As the amount of oversampling is lessened, the lines of 
structure are drawn closer together.  The thicknesses of the lines are highly dependent on 
the epsilon used to create the RPs.  An illustration of this can be seen if Figure 2.2. 
 
Figures 2.1 and 2.2 clearly show how signal to noise ratio and oversampling 
independently affect recurrence plots, whereas Figure 2.3 shows their combined affects.  

11 



 
 
 

The left column is identical to that of Figure 2.2, whereas the middle and the right 
columns were created from the same signals with lower signal to noise ratios. 
 

Figure 2.2:  RPs created from a harmonic signal with a constant sampling rate (1 kHz) 
and an increasing frequency from the left to the right (10 Hz, 50 Hz, and 100 Hz.)  The 
parameters used in creating the recurrence plots were dimension of 4, delay of 12, 
epsilon of 1, and neighbor search using Euclidean norm between normalized vectors. 
 
Notice how the structure within the recurrence plots becomes less visible as you go down 
the right column even though their signal to noise ratios are identical.  The reason for this 
is because the spreading of the points of recurrence has a much greater impact when the 
lines of structure are thinner and spaced closer together, based upon the epsilon and 
oversampling, to begin with.  The level of noise needed to blur the recurrence plot, 
making it indistinguishable from a null plot, is much less in this case.  Therefore, the less 
oversampled a signal is, and the lower the signal to noise ratio is, the quicker the structure 
within the recurrence plot deteriorates, along with the chances of signal detection. 
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Figure 2.3:  RPs created from a harmonic signal with constant sampling rate (1 kHz) and 
increasing frequency from the top to the bottom (10 Hz, 50 Hz, and 100 Hz) and 
decreasing signal to noise ratio from the left to the right (15dB, 0dB, and –15dB.)  The 
parameters used in creating the recurrence plots were dimension of 4, delay of 12, 
epsilon of 1, and neighbor search using Euclidean norm between normalized vectors.
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3.  Intensity Analysis 
 
When signals are visibly detectable in a recurrence plot it is due to the varying intensity, 
or the change in the spatial distribution, of the recurrence points.  Even though these 
variations are what the human eye naturally picks out, having a processor identify these 
can be a little more challenging when the plot becomes blurred.  Intensity Analysis is a 
proposed technique designed to characterize the localized variations in the points of 
recurrence within a recurrence plot in order to detect the presence of a deterministic 
signal embedded in noise.   
 
Intensity Analysis is accomplished by sliding an overlapping window, one pixel at a time 
(i.e. 2-D convolution,) over the entire plot and summing up the number of recurrence 
points contained within the window.  The results can then be analyzed and a metric can 
be created to determine whether or not a deterministic signal was present.  Figure 3.1 
shows an example of how Intensity Analysis is performed.  The recurrence plot on the 
left is an enlarged view of a portion of a recurrence plot, which was created from a 
harmonic signal that was sampled twenty times faster than its frequency, and has a signal 
to noise ratio of –10 dB.   
 

Figure 3.1:  Example of Intensity Analysis using a 5x5 window.  The plot on the left is an 
enlarged view of a small portion of a recurrence plot and the numbers on the right are 
the results from Intensity Analysis. 
 
An appealing way to view the results from Intensity Analysis is to construct a histogram 
from the results to show the distribution of the points of recurrence.  Figures 3.2 shows 
some results created from signals with various levels of AWGN.  Viewing the plots 
across the rows, from the top to the bottom, the signal to noise ratios are 10 dB, 0 dB, -5 
dB, -10 dB, -15 dB, and pure WGN.  The x-axis in the histograms represents the resultant 
value for the number of points of recurrence within a given window.  For example, with a 
window size of five by five, the x-axis will have w values from zero to twenty-five.  The 
y-axis corresponds to the number of times that resultant value was found throughout the 
recurrence plot. 
 
These shapes of the histograms should not be surprising because it follows what has all 
ready been observed.  The histograms with the larger tail sections and lower central 
region, corresponding to a higher signal to noise ratio, were a direct result from the well-

14 



 
 
 

defined lines of structure within the recurrence plots.  Conversely, the histograms with 
the smaller tail sections and larger peaking central region, corresponding to the weaker 
signal strength, were due to the spreading of the points of recurrence within the 
recurrence plots.  Hence, the more evenly distributed the points of recurrence become 
(i.e. the further the signal is buried in noise,) the larger the central peak becomes, and the 
lower the tails become.  
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Figure 3.3:  Recurrence Plots used to create the histograms shown in Figure 3.2.  The 
RPs were created from a 20 Hz harmonic signal sampled at 1kHz.  The signal to noise 
ratios are decreasing from the left to the right and from the top to the bottom (10dB, 0dB, 
-5dB, -10dB, -15db, and white Gaussian noise.)  The parameters used in creating the 
recurrence plots were dimension of 4, delay of 12, epsilon of 1, and neighbor search 
using Euclidean norm between normalized vectors.
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4.  Results 
 
4.A.  Intensity Analysis 
 
Looking at the histograms from Figure 3.2, as the signal to noise ratio was decreased, the 
shapes of the histograms became very similar to that of pure white Gaussian noise.  
Figure 4.1 has the results overlaid to show how similar they are.  Three key areas of the 
results are also enlarged to show the trends at these points for the differing levels of 
signal to noise ratio.   

Figure 4.1:  These plots show how signal to noise ratio impacts Intensity Analysis of 
recurrence plots, highlighting the key regions of the results. 
 
The results show that as the signal to noise ratio is decreased the tails of the histogram 
become smaller while the peak becomes larger.  More importantly, as the signal to noise 
ratio is decreased, the points converge with those of pure white Gaussian noise.  It should 
also be noted that these signals used the same signal and noise vectors in order to better 
demonstrate the trends (i.e. the signal vector was multiplied by some constant while the 
noise vector remained constant in order to obtain the desired SNR.)   
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Figure 3.2 and 4.1 clearly illustrate the effects of signal to noise ratio on Intensity 
Analysis, but does not expound on the effects of oversampling.  Figure 4.2 compares two 
signals with different levels of oversampling, and a relatively low signal to noise ratio, to 
a pure Gaussian noise signal.  Notice how much closer to the Gaussian noise signal the 
less oversampled signal is.  These results reinforce what was seen earlier where a 
recurrence plot deteriorates at quicker rate when noise is added for a signal that is less 
oversampled. 
 

Figure 4.2:  These plots show how the ratio of signal frequency to sampling frequency 
impacts Intensity Analysis of recurrence plots, highlighting the key regions of the results.   
 
Since recurrence plots will vary when generated from signals containing white Gaussian 
noise, as seen in Figure 4.3, it can only be expected that the results from Intensity 
Analysis will follow.  The amount of this variation is an important factor in being able to 
detect the presence of a deterministic signal embedded in noise.  Figure 4.4 illustrates the 
amount of variation can be expected from Intensity Analysis results. 
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Figure 4.3:  These plots show the variation in recurrence plots generated from signals 
with the same signal to noise ratio (-10 dB) and amount of oversampling (sampling 
frequency is 50 times greater than the harmonic frequency.)  The parameters used in 
creating the recurrence plots were dimension of 4, delay of 12, epsilon of 1, and neighbor 
search using Euclidean norm between normalized vectors. 
 

Figure 4.4:  These plots show the variation that is seen in Intensity Analysis results.  
Each plot was generated from an ensemble of 1000 sample runs.  The top left plot was 
created from harmonic signals with a frequency of 1/50th the sampling rate and a signal 
to noise ratio = -10 dB; the top right plot was created from harmonic signals with a 
frequency of 1/10th the sampling rate and a signal to noise ratio of –10 dB; the bottom 
plot was created from pure white Gaussian noise signals. 
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4.B.  ROC Curves 
 
To test the feasibility of using Intensity Analysis of recurrence plots to determine the 
presence of a deterministic signal embedded in noise, a ROC curve, as described in 
Section 1.B, can be used. Note that drawing a diagonal from the (0,0) to the (1,1) 
coordinates would represent a fifty-fifty chance (pure guessing) of correctly detecting the 
presence of a deterministic signal embedded in noise. 
 
There are many tests that could be constructed and applied to the results of Intensity 
Analysis to determine whether or not a deterministic signal is present.  From the Intensity 
Analysis results displayed in Figures 4.1 and 4.2, the zero term, central hump or peak 
term, and variance seem like logical test points.  As previously discussed, the zero term is 
expected to be lower on average for pure GN signals whereas the peak term is expected 
to be higher.  The variance is expected to be larger as well for pure GN signals since the 
histograms for these signals tend to be more peaked and drawn in.  
 
Both harmonic signals and PRBS signals were created with varying SNRs and varying 
frequencies and compared to that of pure white Gaussian noise signals.  The following 
figures are the resultant ROC curves from the previously mentioned tests. 
 

 
Figure 4.5:  Signal detection results of varying SNR levels for the zero term.  The ROC 
curve on the left was created from harmonic signals and the curve on the right from 
PRBSs.  Each signal had a 20 Hz base frequency and was sampled at 1 kHz.  The 
corresponding RPs were created with dimension of 4, delay of 12, epsilon of 1, and 
neighbor search using Euclidean norm between normalized vectors.  The Intensity 
Analysis was performed with a 5 by 5 window size.  Here the zero term was thresholded 
to determine the presence, or absence, of a signal.   
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Figure 4.6:  Signal detection results of varying levels of oversampling for the zero term.  
The ROC curve on the left was created from harmonic signals and the curve on the right 
from PRBSs.  Each signal had a 20 Hz base frequency and was sampled at 1 kHz with an 
SNR of –10 dB.  The corresponding RPs were created with dimension of 4, delay of 12, 
epsilon of 1, and neighbor search using Euclidean norm between normalized vectors.  
The Intensity Analysis was performed with a 5 by 5 window size.  The zero term was 
thresholded to determine the presence, or absence, of a signal. 
 
 

 
Figure 4.7:  Signal detection results of varying SNR levels for the peak term.  The ROC 
curve on the left was created from harmonic signals and the curve on the right from 
PRBSs.  Each signal had a 20 Hz base frequency and was sampled at 1 kHz.  The 
corresponding RPs were created with dimension of 4, delay of 12, epsilon of 1, and 
neighbor search using Euclidean norm between normalized vectors.  The Intensity 
Analysis was performed with a 5 by 5 window size.  The peak term was thresholded to 
determine the presence, or absence, of a signal. 
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Figure 4.8:  Signal detection results of varying levels of oversampling for the peak term.  
The ROC curve on the left was created from harmonic signals and the curve on the right 
from PRBSs.  Each signal had a 20 Hz base frequency and was sampled at 1 kHz with an 
SNR of –10 dB.  The corresponding RPs were created with dimension of 4, delay of 12, 
epsilon of 1, and neighbor search using Euclidean norm between normalized vectors.  
The Intensity Analysis was performed with a 5 by 5 window size.  The peak term was 
thresholded to determine the presence, or absence, of a signal. 
 
 

 
Figure 4.9:  Signal detection results of varying SNR levels for the variance.  The ROC 
curve on the left was created from harmonic signals and the curve on the right from 
PRBSs.  Each signal had a 20 Hz base frequency and was sampled at 1 kHz.  The 
corresponding RPs were created with dimension of 4, delay of 12, epsilon of 1, and 
neighbor search using Euclidean norm between normalized vectors.  The Intensity 
Analysis was performed with a 5 by 5 window size.  The variance of the Intensity Analysis 
results was thresholded to determine the presence, or absence, of a signal. 
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Figure 4.10:  Signal detection results of varying levels of oversampling for the variance.  
The ROC curve on the left was created from harmonic signals and the curve on the right 
from PRBSs.  Each signal had a 20 Hz base frequency and was sampled at 1 kHz with an 
SNR of –10 dB.  The corresponding RPs were created with dimension of 4, delay of 12, 
epsilon of 1, and neighbor search using Euclidean norm between normalized vectors.  
The Intensity Analysis was performed with a 5 by 5 window size.  The variance of the 
Intensity Analysis results was thresholded to determine the presence, or absence, of a 
signal.
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5.  Summary 
 
Intensity Analysis is a new approach for the quantification of recurrence plots.  It utilizes 
an overlapping windowing technique to give a quantified representation of the localized 
variations in the points of recurrence, which correspond to the presence/absence of 
structure within the recurrence plot. 
 
A useful way to view the results from Intensity Analysis is to create a histogram from the 
results.  Histograms that display larger tails and lower central regions correspond to 
signals constructed from relatively larger levels of deterministic signals.  Conversely, 
histograms with lower tails and a larger central hump correspond to a greater presence of 
white Gaussian noise in the signal.  Various metrics can be applied to the results of 
Intensity Analysis to determine whether or not a given recurrence plot was created from a 
signal containing some appreciable level of a deterministic signal. 
 
References [12,13,14,15] have been added for additional reading on the subject of 
recurrence plots.
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